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Solving for S,(!~)(J~) yields

S2(LL)(ff) = –j2rc(2f)C2Z03/2ZL(2j)

1 + 2s,@Lyf) + [x(LL)(”f)12 . (~oq

z~(2f) + z~

Equation (109) clearly reveals how the reflection coefficient

of the 1-port and the linearized impedance of the load

enter into determination of the second-order response.

Observe that the reflection coefficient and the linearized

load impedance are functions of frequency.

In general, the nonl@ear scattering functions S~LL) “

:::;ta;;o; of the form~) can be obtained from (102) by assuming an
. .

(110)

in conjunction with the harmonic input method.

V. CONCLUSION

Scattering variables are convenient to use when analyzing

microwave systems. This paper has demonstrated that the

conventional linear scattering parameter theory is a special

case of a more general theory applicable to nonlinear

systems. In addition, scattering variables can be used to

simplify the characterization of a nonlinear multiport when

the ports are matched to the reference impedance. The

nonlinear scattering functions facilitate the calculation of

power in nonlinear distortion products at microwave

frequencies.
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Experimental and Theoretical Studies on
Electromagnetic Fields Induced Inside

Finite Biological Bodies
BHAG SINGH GURU, STUDENT MEMBER, IEEE, AND KUN-MU CHEN, FELLOW, IEEE

Abstract—The total electric field inside some simulated biological
bodies induced by an electromagnetic wave has been quantified by the
recently developed tensor integral equation method and measured by an

insulated prohe. In general, the induced electric field inside a biological

body was found to be quite complicated, An excellent agreement was

obtained between theory and experiment.

1. INTRODUCTION

I
N THE STUDY of the interaction of electromagnetic

radiation with biological bodies, the key physical

quantity which determines the bioeffects on the body is

the actual electromagnetic field induced inside the body by

the incident electromagnetic wave. Since a biological body
is usually a heterogeneous finite body with an irregular
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shape, the quantification .of the internal electromagnetic

fields becomes a difficult problem. For mathematical

simplicity, commonly used models are the plane slab [1],

[2], the sphere [3]-[5], the cylinder [6], and the spheroids

[7], [8]. Although these simple models provide estimates of

the internal electromagnetic fields, the results have limited

applicability to the biological bodies with irregular shapes

and illuminated by a microwave.

Recently, Livesay and Chen [9] have developed a theoret-

ical method called the tensor integral equation method which

can be used to quantify the internal electric field induced

by an incident electromagnetic wave inside arbitrarily

shaped biological bodies. This method has been utilized

to quantify the induced electric field inside some simulated

biological bodies illuminated by a microwave. The same

induced electric field has been measured by a small insulated

probe. In general, the induced electric field inside the body

was found to be quite complicated even though the incident
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EM wave is a simple plane wave. In this study an excellent

agreement was obtained between theory and experiment.

This agreement confirms the accuracy of the tensor integral

equation method. In this paper an inherent experimental

error associated with an implantable probe immersed in a

finite biological body is also discussed.

II. TENSOR INTEGRAL EQUATION METHOD

Since the tensor integral equation method [9] has been

published, only two key equations are quoted here.

If a finite biological body of arbitrary shape, with permit-

tivity e(?), conductivity o(?), and permeability ,uO, is

illuminated in free space by an incident electromagnetic

wave with an electric field ~i(?), the total induced electric

field ~(?) inside the body can be determined from the

following tensor integral equation:

= P(?) (1)

where ~(?) = o(?) + jco(.s(?) – 8.), co is the free-space

permittivity, the PV symbol means the principal value of

the integral, ~?,?’) is the free-space tensor Green’s function,

and V is the body volume.
If the body is partitioned into N subvolumes or cells,

and l?(?) and z(?) are assumed to be constant within each

cell, (1) can be transformed into 3N simultaneous equations

for Ex, EY, and E= at the centers of N cells by the point

matching method. These simultaneous equations can be

written into matrix form as

The [G] matrix is a 3N x 3N matrix, while [E] and [Ei]

are 3N column matrices expressing the total electric field

and the incident electric field at the centers of N cells. The

elements of the [G] matrix have been evaluated in [9].

Therefore, with the known incident electric field l?(?), the

total induced electric field i(?) inside the body can be

obtained from (2) by inverting the [G] matrix,
This method has been used to calculate the induced

electric field inside a biological body illuminated by a

simple plane wave. The following example is given to show

the fact that the induced electromagnetic field inside of a
biological body can be quite complicated even though the

incident electromagnetic wave is a simple plane wave. The

example is a muscle layer with dimensions of 5 x 5 x 0.5

cm illuminated by a plane EM wave of 1 GHz at end-on

incidence, as shown in Fig. 1. For this case the electric field

of the incident wave can be divided into the symmetrical

and antisymmetrical components with respect to the central

axis (the x axis) of the muscle layer

2 = e-~fi0z2 = Z,i + Z.i

where

E,i = Cos /.?ozt

l?ai = –j sin ~oz~. (3)

4X
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Fig. 1. The symmetrical mode of the electric field induced in a muscle
layer by the symmetrical component of the electric field of an incident
plane wave (only + of the layer shown).

The total electric field ~ induced inside the muscle layer

also consists of a symmetrical component Z, and an anti-

symmetrical component & ~, and J?. can be determined

from the following tensor integral equations:

= Cos pozf (4)

= –j sin flOzA?. (5)

The numerical solutions for l?~(?), l?.(?) are shown in Figs.

1–3. Fig. 1 shows ~J;), which is roughly a linearly polarized

field parallel to the incident electric field. Fig. 2 shows

l?.(?), which is approximately a linearly polarized circul-

atory field. This ~.(~) excites a circulatory eddy current

which can be considered to be induced by the magnetic

field of the incident wave from an alternative viewpoint.

If ~J?) and ~.(?) are combined to yield the total electric

field l?(?), an elliptically polarized field is obtained, as

shown in Fig. 3. In general, the amplitude and shape of

~(i) is a function of location inside the body and is also

dependent on the frequency and polarization of the incident

wave and the electrophysical properties of the body.

It is important to point out that if the incident electric

field ~i(?) were assumed to be approximately uniform over

the tissue layer and the antisymmetrical component of

ii(?) were ignored (this is a careless assumption often used
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Fig. 2. The antisymmetrical mode of the electric field induced in a
muscle layer by the antisymmetrical component of the electric
field of an incident plane wave (only+ of the layer is shown).
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Fig. 3. The total electric field induced in a muscle layer by an incident
plane wave (only + of the layer is shown).
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Fig. 4. Experimental setup for measurement of electric field incluced
inside a box filled with saline solution.

when the body is small compared to a wavelength), the

total induced electric field ~(i) would have been a linearly

polarized field with a distribution similar to ~,(?), as shown

in Fig. 1. Thus the antisymmetrical component l?.(?) would

be completely overlooked and the precise nature of the

elliptically polarized total electric field ~(:) would never

have been predicted.

This example illustrates the fact that a precise specifica-

tion of the incident electric field is essential for an accurate

determination of the induced electric field inside the body.

Thus special care is warranted for the case of a body

illuminated by a nonuniform electromagnetic field. For

the case of electrically small bodies, if the quasi-static

approximation is to be made, the body should be assumed

to be immersed in an approximately uniform incident electric

field as well as an approximately uniform incident magnetic

field.

To prove the aforementioned theoretical observation

and to confirm the accuracy of the tensor integral equation

method, an experiment has been conducted to measure the

induced electric field inside some boxes containing saline

solution. The details of the experimental study are given

in Section III.

III. EXPERIMENT

The schematic diagram of the experimental setup for

measuring the induced electric field in simulated biological

bodies is shown in Fig. 4. For simulated biological bodies,

a number of experimental models with various dimensions

were constructed with plexiglass and filled with a saline

solution of various salt concentrations. These models were

placed in an anechoic chamber and illuminated” by electro-

magnetic waves with frequencies ranging from 1.7 to 3.0

GHz (with l-kHz modulation) radiated from a horn

antenna. The induced electric field inside the solution was

measured by a small dipole-type probe loaded with a

microwave detector diode (HP 5082-2755) at the terminals.

The detected output of the probe was connected to an SWR

meter through a pair of thin high resistance wires (Nichrome
V wire of 2-roil diameter). The high resistance lead wires

were needed to minimize the interference of the wires with

the incident electromagnetic wave. Since the probe and
part of the lead wires were immersed in a conducting saline

solution, it was necessary to insulate the probe and the lead

wires with a thin layer of Klyron spray. A vertical dipole

probe was used to measure the vertical component of the

induced electric field (l?X) and a horizontal dipole probe
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Fig. 5. A rectangular model containing salt solution illuminated by
an EM wave at end-on incidence.
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Fig. 6. Theoretically induced E+field in + of the rectangular shaped
model shown in Fig. 5. Freq = 2.45 GHz, c = 5.934 U/m, & = 68,487
80. Salt concentration = 0.5 normal. Cell size = 1 cm3.

was used to measure the horizontal components (EY and

Ez). The length of the dipole is about 5 mm.

The experimental results are shown in comparison with

the theoretical results in Figs. 5–17. In Fig. 5 a rectangular

plexiglass box with dimensions of 6 x 6 x 1 cm containing

0.5 normal saline solution is illuminated by a microwave of

2,45 GHz with a vertical electric field and at end-on in-

cidence. Fig. 6 indicates the theoretical results for the x and

z components of the induced ~ field at the centers of the

cells. The y component is neglected because it is very small.

In the calculation, conductivity a is assumed to be 5.934

U/m and permittivity c is assumed to be 68.48780 correspond-

ing to a 0.5 normal salt concentration at 9.45 GHz [10].

Only a half of the model is shown in Fig, 6 because of

symmetry. The upper part of Fig. 7 shows the comparison

of the theoretical and experimental results for the dissipated

power due to Ex, @lEx12, as a function of z along x = 0.5

cm, x = 1.5 cm, and x,= 2.5 cm lines. The lower part

of Fig. 7 shows the theoretical and experimental values of

the dissipated power due LOE=, $ITIEZI2, as a function of z

along x = 0,5 cm, x = 1.5 cm, and x = 2.$ cm lines. It

is observed that the patterns of the dissipated power are

quite complicated functions of the location, but the agree-

ment between the theory and the experiment is excellent.

It is noted in Fig. 7 that experimental results on c7/21Ez12

are not available because it was not possible to measure

E, near the edge of the box with a horizontal probe of
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Fig. 7. Theoretical and experimental values of the dissipated power
due to E. and E=, i.e., (u/2) lEx12 and (u/2) ]E,12, respectively, as a
function of z along x = 0.5 cm, x = 1.5 cm, and x = 2.5 cm.
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Fig. 8. Theoretical and experimental values of the dissipated power
due to Ex, (u/2)lEx12, as a function of Y along x = 0.5 cm, for
dhTerent frequencies, conductivities, and permittivities.

finite dimensions. In the next example we consider thefield

inside a model with dimensions of 12 x 12 x 1 cm

containing saline solutions of various salt concentrations

and illuminated by a microwave of 2.032 or 2.45 GHz at

normal incidence. Fig. 8 shows the theoretical and ex-

perimental values of the dissipated power due to EX,
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Fig. 9. Theoretical and experimental values of the dissipated power
due to E., (42)lE.\z, as a function of y along x = 0.5 cm. Freq =
2.45 GHz, c = 5.934 U/m, s = 68.487 EO.Salt concentration = 0.5
normal.

Fig. 10. A rectangular two-layer model containing salt solution
illuminated by an EM wave at normal incidence.

@lEX12, as a function of y along x = 0.5 cm line for three

cases of different frequencies, conductivities, and permit-

tivities. For each case in Fig. 8 particular values off, a,
and c are indicated. The distribution of the dissipated power

is shown to change quite significantly when J o, and & are

changed only “slightly. The agreement between theory and

experiment is excellent except at the very edge of the model.

This discrepancy will be discussed in Section IV. In Fig. 9

the distribution of a/21Ex12 in a larger model with dimen-

sions of 16 x 16 x 1 cm is shown. Relevant parameters

are shown in the figure. In this figure an excellent agreement

between theory and experiment is again obtained except

at the edge of the model. We also considered a thicker model

with dimensions of 12 x 12 x 2 cm as shown in Fig. 10.
The purpose of this study is to see how the induced electric

field decays as the incident wave penetrates the body and

to observe the accompanied change in the field distribution

pattern. Fig. 11 shows the theoretical and experimental

results for the dissipated power due to E., a/21Exl2, as a

function of y along x = 0.5 cm line passing through the

centers of the first and second layers. The dissipated power

in the first layer is several decibels higher than that in the

second layer as expected. An interesting observation,

however, is that the distribution patterns of the dissipated

power differ significantly in these two layers. An excellent

dB

-12-

x
2nd layer

kt layer
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~=13!5~m
1st Layer 12 cm ~

o 0 0 theory
— exp. 1
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. . k12cm A~1
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0 H’ ~
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Fig. 11. Theoretical and experimental values of the dissipated power
due to Ex, (u/2) lEx12, as a function of y along x = 0.5 cm. Frcq =
2.45 GHz, a = 5.934 u/m, c = 68.487 to. Salt concentration ==0.5
normal.

x

Fig. 12. An I-shaped model containing sake solution illuminated
by an EM wave at normal incidence.

agreement between the theory and the experiment is also

observed in this case.

After examining the induced fields inside rectangular

bodies to a great extent, the case of irregular bodies is

considered. An I-shaped model with dimensions as shown

in Fig, 12 was constructed and was illuminated by a 2.45-

GHz microwave at normal incidence and at end-on in-

cidence, The model was filled with a saline solution of 0.5

normality in the experiment. Fig. 13 indicates the theoretical

values of the induced 1? field inside the model when illum-

inated by the microwave at normal incidence. Only a

quarter of the model is shown in Fig. 13 because of sym-

metry. The amplitude and phase angle of E. and EY at
the centers of the cells are shown in this figure as well. E=

is neglected because it is extremely small. Fig. 14 shows the

comparison of the theoretical and experimental results for

the dissipated power due to Ex, a/21Ex12, as a function of y

along x = 0.5 cm and x = 3.5 cm lines. The patterns of the

dissipated power are quite complicated functions of the
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Fig. 13. Theoretically induced ~field in + of the I-shaped model
shown in Fig. 1. Freq = 2.45 GHz, a = 5.934 U/m, a = 68.487 eo,

#= 21.-J’OZ V/mat 2.45 GHz.
s k concentration = 0.5 normal. Cell size = 1 cm3. Incident E field:
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Fig. 14. Theoretical and experimental values of the dissipated power
due to E., ~C@J2, as a function of y along x = 0.5 cm and x = 3.5
cm. Freq = 2.45 GHz, o = 5.934 U/m, .s= 68.48760. Salt concentra-
tion = 0.5 normal.

location, but the agreement between the theoretical and

experimental results is excellent. Fig. 15 shows the theoretical

and experimental values of the dissipated power due to EY,
O/21EY12, as a function of y along x = 0.5 cm and x = 3.5

cm lines, In Figs. 16 and 17 the results for the case of the

I-shaped model illuminated by the same microwave at

t
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Fig. 15. Theoretical and experimental values of the dissipated power
due to E,, &lEY12, as a function ofy along x = 0.5 cm and x = 3.5
cm. Freq = 2.45 GHz, a = 5.934 U/m, c = 68.487 .s.. Salt concentra-
tion = 0.5 normal.
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Fig. 16. Theoretical and experimental values of the dissipated power
due to E., (a/2) lE.12, as a function of Z along x = 3.5 cm and
x = 0.5 cm. Freq = 2.45 GHz, a = 5.934 U/m, e = 68.487 8..
Salt concentration = 0.5 normal.

end-on incidence are shown. Fig. 16 shows the comparison

of the theoretical and experimental results for the dis-’

sipated power due to Ex, a/21Exl 2, as a function of z along

x = 3.5 cm and x = 0.5 cm lines. It is observed that the

patterns of the dissipated power as functions of the location
are entirely different from the case of the normal incidence.

Nevertheless, an excellent agreement between theory and

experiment was again obtained in this case. (It is noted
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Fig. 17. Theoretical and experimental values of the dissipated power
due to Ez, (cr/2)lE.12, as a function of z along x = 3.5 cm and
x = 0.5 cm. Freq = 2.45 GHz, u = 5.934 t$/m, c = 68.487 e~.
Salt concentration = 0.5 normal.

that in the end-on incidence case the z axis corresponds to

the -y axis of the normal incidence case.) Fig. 17 shows the

theoretical and experimental values of the dissipated power

due to Ez, o/21Ez12, as a function of z along x = 3.5 cm

and x = 0.5 cm lines.

As evidenced by the examples given in Figs. 5-17, the

tensor integral equation method has been completely

confirmed by the experiment with a minor exception at the

very edge of the body. The discrepancy between theory

and experiment at the edge of the body is essentially due

to an inherent error in the probe measurement. This point

is discussed in Section IV.

IV. EXPERIMENTAL ERROR

When a probe is immersed in a finite biological body to

measure the induced electric field, the output of the probe

becomes location dependent especially at the edge of the

body. To show this fact, let us consider the geometry as

shown in Fig. 18. A finite body occupies a region V of

space and is characterized by electrical parameters e(~),

a(?), and PO. It is illuminated by an incident wave with an

electric field Et. A thin wire probe, immersed in Vz lies

along contour r; location along the probe is designated

by the variable s with origins = O at the probe terminals;

3 is a unit tangent vector to r at any point. VO and 10 are

the voltage and current at the ~robe terminals, to which

a load impedance Z~ is connected. The incident electric

field ii excites an induced electric field ~(?) in the body V,

and this field subsequently excites a current distribution
1(s) = 10J(s) in the wire probe where J(s) is a current

distribution function with ~(0) = 1. Induced probe current

Z(s) maintains a secondary field ~P in the body. Thus the

total electric field inside V in the presence of the probe is

E’(?) = E(?) + Ep(i). (6)

Z[ Io.d impedance ‘1 -

‘;’::;~rn‘n
( 4-/

I(s)

n

‘XQ ;(;”)-- ——___ –--L :-.%=O

?~

------- --——+
- +V

voltage 20

measurement
device r

probe

,
(;”)

=twheewI(S) = IO f[s)

= induced probe

Fig. 18. Configuration of probe in a finite heterogeneous volume
conductor.

The function of the probe is to measure I?(7) and not

l?(?). Indeed this is the case, as can be seen from the

following development,

The boundary condition on a tangential electric field at

the probe surface requires that $. l?(s) = O, except at the

slice gap terminals

3 “ P(s) = V&(s) = ZJJ(S)

where VO = ZJO, as shown in Fig. 18.

Integrating (7), we have

J
~(s)3 “ fl’(S) ds = ZJO, (“.” f(o) = 1).

r

With (6), (8) becomes

J J
j(s)3 o,??(S) ds + ~(s)3 . ~,(S) ds == Z~IO.

r r

(7)

(8)

(9)

Since the first integral of (9) represents the total driving

force for the probe current, we can define an equivalent

probe driving voltage as

J
Vc~ = ~(s)3 “ Z(S) ds. (lo)

r

It is noted that l?(s) is the internal electric field at the probe

location, in the absence of the probe, and is the key quantity

to be measured.
The second integral of (9) is the integration of l?,(s),

which is proportional to & We can define an internal

impedance for the probe as

J
Zin = e+ j(s)3 “ ~P(s) ds. (11)

or

This Zi. is the input impedance of the probe when it is

used as a radiating antenna imbedded in a finite biological

body.

With (10) and (11) substituted in (9), we obtain

Ve~ = l~Zin + l~Z~
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m-Zin(T) t+
Veq(7) “- ) 2 1, VO-. IZ

OL

10

Fig. 19. Equivalent circuit for probe in a finite heterogeneous volume
conductor.

or

I. =
v

Zin 7 ZL “
(12)

Equation (12) leads to an equivalent circuit for the. probe,

as shown in Fig. 19. This circuit differs from the conven-

tional equivalent circuit for a receiving antenna in that Zi~

is a strong function of the, heterogeneity of the medium

and the body geometry, and V& is also influenced by the

heterogeneity of the medium because ~(s) is a function of

electrical parameters at the probe location.

The probe response is equal to the terminal voltage and

can be expressed as

v-o(i) = Ioz~ =
v-eq(7)zL

Zin(?) + ZL

z~ Jf(s)$ o i(S) ds
= Zin(?) + Z~ r

= 2(?) “
J~f(s)3ds[Z*(~+ZJ ’13)

(for a small probe). Equation (13) clearly indicates that

the probe response is proportional to the internal electric

field l?(?) at the probe location in the absence of the probe.

However, it also shows the proportionality constant between

Vo(?) and l?(?) to be a strong function of probe location

for the following reasons. First, Zi~(?) as defined in (11)

is a function of location because ~P(s) produced by the

probe current is dependent on the relative position of the

probe in the body and the body geometry. Secondly, the

distribution function for the probe current~(s) is dependent

on the electrical properties (8(?),6(?)) at the probe location.

It is noted that in a homogeneous medium, such as in our

experimental models, & and a are constant so that ~(s)

remains constant, However, Zi~(?) is still a strong function

of the location in a homogeneous finite body.
A simple experiment can indicate that Zi~(?) changes most

rapidly near the edge of the body. Thus the proportionality

constant between VO(?) and ~(?) may undergo a rapid

change near the edge of the body leading to an inherent

experimental error at this location. Therefore a location-

dependent probe calibration factor is ne~ded before an

implantable probe can be used to accurately measure the

internal field induced inside a finite biological body.
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V. CONCLUSION

An experiment has been conducted to measure the

induced electric field inside finite bodies containing saline

solution with shielded implantable probes. Experimental

results are used to confirm the accuracy of the theoretical

results based on the tensor integral equation method. The

theoretical and experimental results both indicate the

complexity of the induced electric field in a finite biological

body. ,An inherent experimental error associated with an

implantable probe immersed in a finite biological body was

also discussed.
In the numerical calculation of the tensor integral equa-

tion method, if the size of the cells is kept smaller than ~

of the free-space wavelength, sufficiently accurate results

are obtained. Although with this cell size it is not possible

to predict the exact pattern of the standing wave inside the

body, it was found to be accurate enough to predict the

induced electric field at the centers of the cells. If a more

accurate pattern of the standing wave is needed, it is only

necessary to reduce the cell size at the expense of increa~ifig

the computing time. It is important to note that the num-

erical tensor integral equation method can produce exact

solutions for the induced electric field in any arbitrarily

shaped biological body; the only limitation is the limitation

in the computing time and computer storage capacity.
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