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Solving for S,ED( £, f) yields
S EP(ff) = =j2rnf)CaZo> *Z1(2f)

14 25%0) + [5,*P(N]
Z,2f) + Zo '

Equation (109) clearly reveals how the reflection coefficient
of the 1-port and the linearized impedance of the load
enter into determination of the second-order response.
Observe that the reflection coefficient and the linearized
load impedance are functions of frequency.

In general, the nonlinear scattering functions S, -
(f1,"**,f,) can be obtained from (102) by assuming an
excitation of the form

(109)

aB(t) = Y nImt (110)
m=1

in conjunction with the harmonic input method.

V. CONCLUSION

Scattering variables are convenient to use when analyzing
microwave systems. This paper has demonstrated that the
conventional linear scattering parameter theory is a special
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case of a more general theory applicable to nonlinear
systems. In addition, scattering variables can be used to
simplify the characterization of a nonlinear multiport when
the ports are matched to the reference impedance. The
nonlinear scattering functions facilitate the calculation of
power in nonlinear distortion products at microwave
frequencies.
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Experimental and Theoretical Studies on
Electromagnetic Fields Induced Inside
Finite Biological Bodies

BHAG SINGH GURU, STUDENT MEMBER, IEEE, AND KUN—MU CHEN, FELLOW, IEEE

Abstract—The total electric field inside some simulated biological
bodies induced by 4n electromagnetic wave has been quantified by the
recently developed tensor integral equation method and measured by an
insulated probe. In general, the induced electric field inside a biological
body was found to be quite complicated. An excellent agreement was
obtained between theory and experiment.

I. INTRODUCTION

N THE STUDY of the interaction of electromagnetic
radiation with biological bodies, the key physical
quantity which determines the bioeffects on the body is
the actual electromagnetic field induced inside the body by
the incident electromagnetic wave. Since a biological body
is usually a heterogeneous finite body with an irregular
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shape, the quantification .of the internal electromagnetic
fields becomes a difficult problem. For mathematical
simplicity, commonly used models are the plane slab [1],
[2], the sphere [3]-[5], the cylinder [6], and the spheroids
[7], [8]. Although these simple models provide estimates of
the internal electromagnetic fields, the results have limited
applicability to the biological bodies with irregular shapes
and illuminated by a microwave.

Recently, Livesay and Chen [9] have developed a theoret-
ical method called the tensor integral equation method which
can be used to quantify the internal electric field induced
by an incident electromagnetic wave inside arbitrarily
shaped biological bodies. This method has been utilized
to quantify the induced electric field inside some simulated
biological bodies illuminated by a microwave. The same
induced electric field has been measured by a small insulated
probe. In general, the induced electric field inside the body
was found to be quite complicated even though the incident
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EM wave is a simple plane wave. In this study an excellent
agreement was obtained between theory and experiment.
This agreement confirms the accuracy of the tensor integral
equation method. In this paper an inherent experimental
error associated with an implantable probe immersed in a
finite biological body is also discussed.

JI. TeNsSOR INTEGRAL EQUATION METHOD

Since the tensor integral equation method [9] has been
published, only two key equations are quoted here.

If a finite biological body of arbitrary shape, with permit-
tivity e(#), conductivity o(#), and permeability p,, is
illuminated in free space by an incident electromagnetic
wave with an electric field E7(7), the total induced electric
field E(#) inside the body can be determined from the
following tensor integral equation:

[1 + 1’)—] E(7) - PVf (FVE() - G ) dv
3jwe, v

= E(#) (1)

where ©(¥) = o(7) + jo(e() — &), & is the free-space
permittivity, the PV symbol means the principal value of
the integral, af,? ") is the free-space tensor Green’s function,
and V is the body volume.

If the body is partitioned into N subvolumes or cells,
and E(#) and 7(#) are assumed to be constant within éach
cell, (1) can be transformed into 3N simultaneous equations
for E,, E,, and E, at the centers of N cells by the point
matching method. These simultaneous equations can be
written into matrix form as

[Gs) 1 [Go] i [Geed | [LE:] [E/]
(Gl 1 [Gn] | Gl || [B | = = |[BT] @
[Gox] 1[G, 1 [G] [ LIE] [£:]

The [G] matrix is a 3N x 3N matrix, while [E] and [E7]
are 3N column matrices expressing the total electric field
and the incident electric field at the centers of N cells. The
elements of the [G] matrix have been evaluated in [9].
Therefore, with the known incident electric field E%(#), the
total induced electric field E(#) inside the body can be
obtained from (2) by inverting the [G] matrix,

This method has been used to calculate the induced
electric field inside a biological body illuminated by a
simple plane wave. The following example is given to show
the fact that the induced electromagnetic field inside of a
biological body can be quite complicated even though the
incident electromagnetic wave is a simple plane wave. The
example is a muscle layer with dimensions of 5 x 5 x 0.5
cm illuminated by a plane EM wave of 1 GHz at end-on
incidence, as shown in Fig. 1. For this case the electric field
of the incident wave can be divided into the symmetrical
and antisymmetrical components with respect to the central
axis (the x axis) of the muscle layer

Bl= ey o B 4 B
where
L= cos Pozk
E}! = —jsin Byz8. 3
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Fig. 1. The symmetrical mode of the electric field induced in a muscle

layer by the symmetrical component of the electric field of an incident
plane wave (only } of the layer shown).
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The total electric field £ induced inside the muscle layer
also consists of a symmetrical component E, and an anti-
symmetrical component E,. E, and E, can be determined
from the following tensor integral equations:

1+

't(f):l E—:s(i,) _ Pvf T(;I)E's(;-”) -?(?,F’) dav’
14

3jwe,
= cos fyz% (4)

[1 + ﬂ)—] E(F) — PV f (VE(F) - G ) dV
3jwe, v

= —jsin BozR. (5)

The numerical solutions for E(#), E(#) are shown in Figs.
1-3. Fig. 1 shows E(#), which is roughly a linearly polarized
field parallel to the incident electric field. Fig. 2 shows
E/(7), which is approximately a linearly polarized circul-
atory field. This E,(¥) excites a circulatory eddy current
which can be considered to be induced by the magnetic
field of the incident wave from an alternative viewpoint.
If E(#) and E,(#) are combined to yield the total electric
field E(7), an elliptically polarized field is obtained, as
shown in Fig. 3. In general, the amplitude and shape of
E(#) is a function of location inside the body and is also
dependent on the frequency and polarization of the incident
wave and the electrophysical properties of the body.

It is important to point out that if the incident electric
field E'(#) were assumed to be approximately uniform over
the tissue layer and the antisymmetrical component of
E'(7) were ignored (this is a careless assumption often used



GURU AND CHEN: ELECTROMAGNETIC FIELDS AND FINITE BIOLOGICAL BODIES

]

O

E\:.nn_m"i 035 [#3%)  057L82% 079 [81 109 [ 79
' ' 1 1
! 1 '
| ]
1
(E s 2. 0y 233 BT 189 B 12t .l os 3.8
022 [-89% 5(33"|?8?¢5:_—1—1'2T-§7°: T 155 | RE% T 199 |H4T
[
1 3
' ' |
_ ! I 1
: ~— ! \ ! \ : L
206 [0 188 ol 192 (e8] 10 [80°) o037 [75°

T T L0191 nod 1 onC T T ool o1 T O T2 T 250
031 £91°1 . 094 -90: . 154 |-96’: .21 |-88% .266 |-87°
t

1
1

1 \ |
15 @_.901'_‘136 78.9°L.110 B8 073 B2 027 [1.6]
° AT T od a0 Lo ar 1as o
.037 k92 i .11 |-9z°: . 181 |-91= .248 |-9 | .31 |-88

~ N\ \ ! !

1

1 \ | i

090 [7.6% . 082 (.0 066 [N 044 o 8 . 016! (2.7

"o TR T ezt 196 ol 267 [ 3T | e
1
I

]
1] ] i
i |
R ‘ ! 1 !
]
03 z7°0 027|772} .02z | 015 w2 . 006 2.2
ot - Bl el Ll SR T S
X
B ’.’ I’|"’, f = 1 GHz
-r -+ € = 50,71
b gt ] r
fitd K o ¢ = 1.62 1/ -m
] 0 ¥ z .
0.5 -iB,#
%,SSC cm B = Im(e oﬁ) = -jsinp 2k
= ©
C

Fig. 2. The antisymmetrical mode of the electric field induced in a
muscle layer by the antisymmetrical component of the electric
field of an incident plane wave (only % of the layer is shown).
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Fig. 3. The total electric field induced in a muscle layer by an incident
plane wave (only % of the layer is shown).
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Fig. 4. Experimental setup for measurement of electric field induced
inside a box filled with saline solution.

when the body is small compared to a wavelength), the
total induced electric field E(#) would have been a linearly
polarized field with a distribution similar to E(#), as shown
in Fig. 1. Thus the antisymmetrical component E(#) would
be completely overlooked and the precise nature of the
elliptically polarized total electric field E(#) would never
have been predicted.

This example illustrates the fact that a precise specifica-
tion of the incident electric field is essential for an accurate
determination of the induced electric field inside the body.
Thus special care is warranted for the case of a body
illuminated by a nonuniform electromagnetic field. For
the case of electrically small bodies, if the quasi-static
approximation is to be made, the body should be assumed
to be immersed in an approximately uniform incident electric
field as well as an approximately uniform incident magnetic
field.

To prove the aforementioned theoretical observation
and to confirm the accuracy of the tensor integral equation
method, an experiment has been conducted to measure the
induced electric field inside some boxes containing saline
solution. The details of the experimental study are given
in Section III.

II1. EXPERIMENT

The schematic diagram of the experimental setup for
measuring the induced electric field in simulated biological
bodies is shown in Fig. 4. For simulated biological bodies,
a number of experimental models with various dimensions
were constructed with plexiglass and filled with a saline
solution of various salt concentrations. These models were
placed in an anechoic chamber and illuminated by electro-
magnetic waves with frequencies ranging from 1.7 to 3.0
GHz (with 1-kHz modulation) radiated from a horn
antenna. The induced electric field inside the solution was
measured by a small dipole-type probe loaded with a
microwave detector diode (HP 5082-2755) at the terminals.
The detected output of the probe was connected to an SWR
meter through a pair of thin high resistance wires (Nichrome
V wire of 2-mil diameter). The high resistance lead wires
were needed to minimize the interference of the wires with
the incident electromagnetic wave. Since the probe and
part of the lead wires were immersed in a conducting saline
solution, it was necessary to insulate the probe and the lead
wires with a thin layer of Klyron spray. A vertical dipole
probe was used to measure the vertical component of the
induced electric field (E,) and a horizontal dipole probe
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was used to measure the horizontal components (E; and
E)). The length of the dipole is about 5 mm.

The experimental results are shown in comparison with
the theoretical results in Figs. 5-17. In Fig. 5 a rectangular
plexiglass box with dimensions of 6 x 6 x 1 cm containing
0.5 normal saline solution is illuminated by a microwave of
2.45 GHz with a vertical electric field and at end-on in-
cidence. Fig. 6 indicates the theoretical results for the x and
z components of the induced £ field at the centers of the
cells. The y component is neglected because it is very small.
In the calculation, conductivity ¢ is assumed to be 5.934
U/m and permittivity ¢ is assumed to be 68.487¢, correspond-
ing to a 0.5 normal salt concentration at 9.45 GHz [10].
Only a half of the model is shown in Fig. 6 because of
symmetry. The upper part of Fig. 7 shows the comparison
of the theoretical and experimental results for the dissipated
power due to E,, 16|E,|?, as a function of z along x = 0.5
cm, x = 1.5 cm, and x.= 2.5 cm lines. The lower part
of Fig. 7 shows the theoretical and experimental values of
the dissipated power due to E,, 30|E,|?, as a function of z
along x = 0.5 cm, x = 1.5 cm, and x = 2.5 cm lines. It
is observed that the patterns of the dissipated power are
quite complicated functions of the location, but the agree-
ment between the theory and the experiment is excellent.
It is noted in Fig. 7 that experimental results on ¢/2|E,|?
are not available because it was not possible to measvre
E, near the edge of the box with a horizontal probe of
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Fig. 8. Theoretical and experimental values of the dissipated power
due to Ey, (a/2)|E.[? as a function of y along x = 0.5 cm, for
different frequencies, conductivities, and permittivities.

finite dimensions. In the next example we consider the-field
inside a model with dimensions of 12 x 12 x 1 c¢m
containing saline solutions of various salt concentrations
and illuminated by a microwave of 2.032 or 2.45 GHz at
normal incidence. Fig. 8 shows the theoretical and ex-
perimental values of the dissipated power due to E,,
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Fig. 9. Theoretical and experimental values of the dissipated power

due to E,, (a/2)|E.|?, as a function of y along x = 0.5 cm. Freq =
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Fig. 10. A rectangular two-layer model containing salt solution
illuminated by an EM wave at normal incidence.

10]E,|?, as a function of y along x = 0.5 cm line for three
cases of different frequencies, conductivities, and permit-
tivities. For each case in Fig. 8 particular values of f, o,
and ¢ are indicated. The distribution of the dissipated power
is shown to change quite significantly when f, o, and & are
changed only slightly. The agreement between theory and
experiment is excellent except at the very edge of the model.
This discrepancy will be discussed in Section IV. In Fig. 9
the distribution of ¢/2|E,|? in a larger model with dimen-
sions of 16 x 16 x 1 cm is shown. Relevant parameters
are shown in the figure. In this figure an excellent agreement
between theory and experiment is again obtained except
at the edge of the model. We also considered a thicker model
with dimensions of 12 x 12 x 2 cm as shown in Fig. 10.
The purpose of this study is to see how the induced electric
field decays as the incident wave penetrates the body and
to observe the accompanied change in the field distribution
pattern. Fig. 11 shows the theoretical and experimental
results for the dissipated power due to E,, ¢/2|E,|%, as a
function of y along x = 0.5 cm line passing through the
centers of the first and second layers. The dissipated power
in the first layer is several decibels higher than that in the
second layer as expected. An interesting observation,
however, is that the distribution patterns of the dissipated
power differ significantly in these two layers. An excellent
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Fig. 11. Theoretical and experimental values of the dissipated power
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Fig. 12. An I-shaped model containing saline solution illuminated
by an EM wave at normal incidence.

agreement between the theory and the experiment is also
observed in this case.

After examining the induced fields inside rectangular
bodies to a great extent, the case of irregular bodies is
considered. An I-shaped model with dimensions as shown
in Fig. 12 was constructed and was illuminated by a 2.45-
GHz microwave at normal incidence and at end-on in-
cidence. The model was filled with a saline solution of 0.5
normality in the experiment. Fig. 13 indicates the theoretical
values of the induced E field inside the model when illum-
inated by the microwave at normal incidence. Only a
quarter of the model is shown in Fig. 13 because of sym-
metry. The amplitude and phase angle of E, and E, at
the centers of the cells are shown in this figure as well. E,
is neglected because it is extremely small. Fig. 14 shows the
comparison of the theoretical and experimental results for
the dissipated power due to E,, o/2|E.}?, as a function of y
along x = 0.5cm and x = 3.5 ¢cm lines. The patterns of the
dissipated power are quite complicated functions of the
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Fig. 14. Theoretical and experimental values of the dissipated power
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cm. Freq = 2.45 GHz, ¢ = 5.934 /m, ¢ = 68.487 ¢,. Salt concentra-~
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location, but the agreement between the theoretical and
experimental results is excellent. Fig. 15 shows the theoretical
and experimental values of the dissipated power due to E,
0/2|E,|?, as a function of y along x = 0.5 cm and x = 3.5
cm lines. In Figs. 16 and 17 the results for the case of the
I-shaped model illuminated by the same microwave at
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Fig. 16. Theoretical and experimental values of the dissipated power
due to E., (a/2)|E.|%, as a function of Z along x = 3.5

.5 cm and
x = 0.5 cm. Freq = 2.45 GHz, ¢ = 5934 U/m, ¢ = 68.487 ¢,.

Salt concentration = 0.5 normal.

end-on incidence are shown. Fig. 16 shows the comparison
of the theoretical and experimental results for the dis-
sipated power due to E,, 6/2|E,|?, as a function of z along
x = 3.5-cm and x = 0.5 c¢m lines. It is observed that the
patterns of the dissipated power as functions of the location
are entirely different from the case of the normal incidence.
Nevertheless, an excellent agreement between theory and
experiment was again obtained in this case. (It is noted
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that in the end-on incidence case the z axis corresponds to
the y axis of the normal incidence case.) Fig. 17 shows the
theoretical and experimental values of the dissipated power
due to E,, 6/2|E,|)?, as a function of z along x = 3.5 cm
and x = 0.5 cm lines.

As evidenced by the examples given in Figs. 5-17, the
tensor integral equation method has been completely
confirmed by the experiment with a minor exception at the
very edge of the body. The discrepancy between theory
and experiment at the edge of the body is essentially due
to an inherent error in the probe measurement. This point
is discussed in Section IV.

IV. EXPERIMENTAL ERROR

When a probe is immersed in a finite biological body to
measure the induced electric field, the output of the probe
becomes location dependent especially at the edge of the
body. To show this fact, let us consider the geometry as
shown in Fig. 18. A finite body occupies a region V of
space and is characterized by electrical parameters &(#),
o(#), and po. It is illuminated by an incident wave with an
electric field E*. A thin wire probe, immersed in V, lies
along contour I'; location along the probe is designated
by the variable s with origin s = 0 at the probe terminals;
3 is a unit tangent vector to I" at any point. V,, and I, are
the voltage and current at the probe terminals, to which
a load impedance Z; is connected. The incident electric
field E' excites an induced electric field £(#) in the body ¥,
and this field subsequently excites a current distribution
I(s) = I, f(s) in the wire probe where f(s) is a current
distribution function with f(0) = 1. Induced probe current
I(s) maintains a secondary field Ep in the body. Thus the
total electric field inside ¥ in the presence of the probe is

E'(7) = E(7) + E\7). (6)
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ZI = load impedance —

o
current

i terminal (load} \

VO = ZLI = terminal
voltage

voltage
measurement
device

I(s) = Io f(s)
= induced probe

current (where
flo) = 1)

Fig. 18. Configuration of probe in a finite heterogeneous volume
conductor.

The function of the probe is to measure E(#) and not
E'(7). Indeed this is the case, as can be seen from the
following development.

The boundary condition on a tangential electric field at
the probe surface requires that § - £'(s) = 0, except at the
slice gap terminals

8- E'(s) = V,ob(s) = Z1,6(s) Q)

where V, = Z,I,, as shown in Fig. 18.
Integrating (7), we have

f FO8 By ds = Zudoy CofO) = 1) (8)
T
With (6), (8) becomes

f f(s)8+ E(s) ds + f f)8-Efs)ds = Z,I,. (9)
r r

Since the first integral of (9) represents the total driving

.force for the probe current, we can define an equivalent

probe driving voltage as

Vg = f f(s)3 - E(s) ds. (10)
r
It is noted that E(s) is the internal electric field at the probe
location, in the absence of the probe, and is the key quantity
to be measured. .
The second integral of (9) is the integration of E(s),
which is proportional to I,. We can define an internal
impedance for the probe as
Zy = — f £(58 - E(s) ds. 11
I ovr
This Z;, is the input impedance of the probe when it is
used as a radiating antenna imbedded in a finite biological
body.
With (10) and (11) substituted in (9), we obtain

Veq - IOZin + IOZL
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Fig. 19. Equivalent circuit for probe in a finite heterogeneous volume
conductor.

or

Veq (12)

Iy = —a .
Zin + ZL

Equation (12) leads to an equivalent circuit for the probe,
as shown in Fig. 19. This circuit differs from the conven-
tional equivalent circuit for a receiving antenna in that Z;,
is a strong function of the heterogeneity of the medium
and the body geometry, and V., is also influenced by the
heterogeneity of the medium because f(s) is a function of
electrical parameters at the probe location.

The probe response is equal to the terminal voltage and
can be expressed as

l’/eq(r‘)ZL

Vo(F) = IoZ;, = Z.) + Z
in L

pd -—-—-———ZL 3 . o
7o) + 2, O Ee &

= E@#)- fr f(s)3 ds [Z Z (13)

T
in(f ) + ZL
(for a small probe). Equation (13) clearly indicates that
the probe response is proportional to the internal electric
field £(#) at the probe location in the absence of the probe.
However, it also shows the proportionality constant between
Vo(#) and E(7) to be a strong function of probe location
for the following reasons. First, Z; (7) as defined in (11)

is a function of location because Ep(s) produced by the

probe current is dependent on the relative position of the
probe in the body and the body geometry. Secondly, the
distribution function for the probe current f(s) is dependent
on the electrical properties (¢(#),6(7)) at the probe location.
It is noted that in a homogeneous medium, such as in our
experimental models, ¢ and ¢ are constant so that f(s)
remains constant. However, Z,,(#) is still a strong function
of the location in a homogeneous finite body.

A simple experiment can indicate that Z;,(7) changes most
rapidly near the edge of the body. Thus the proportionality
constant between V,(#) and E(#) may undergo a rapid
change near the edge of the body leading to an inherent
experimental error at this location. Therefore a location-
dependent probe calibration factor is needed before an
implantable probe can be used to accurately measure the
internal field induced inside a finite biological body.
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V. CONCLUSION

An experiment has been conducted to measure the
induced electric field inside finite bodies containing saline
solution with shielded implantable probes. Experimental
results are used to confirm the accuracy of the theoretical
results based on the tensor integral equation method. The
theoretical and experimental results both indicate the
complexity of the induced electric field in a finite biological
body. An inherent experimental error associated with an
implantable probe immersed in a finite biological body was
also discussed. :

In the numerical calculation of the tensor integral equa-
tion method, if the size of the cells is kept smaller than %
of the free-space wavelength, sufficiently accurate results
are obtained. Although with this cell size it is not possible
to predict the exact pattern of the standing wave inside the
body, it was found to be accurate enough to predict the
induced electric field at the centers of the cells. If a more
accurate pattern of the standing wave is needed, it is only
necessary to reduce the cell size at the expense of increasing
the computing time. It is important to note that the num-
erical tensor integral equation method can produce exact
solutions for the induced electric field in any arbitrarily
shaped biological body; the only limitation is the limitation

in the computing time and computer storage capacity.
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